Ивин А.А. - Логика / Глава 11. Индуктивные рассуждения / 4. Полная индукция и математическая индукция

4. Полная индукция и математическая индукция

Наряду с неполной индукцией принято выделять в качестве особого вида индуктивного умозаключения полную индукцию.

Её схема:

Следовательно, каждое А есть В.

Здесь в посылках о каждом из предметов, входящих в рассматриваемое множество, утверждается, что он имеет определённое свойство. В заключении говорится, что все предметы данного множества обладают этим свойством.

К примеру, учитель, читая список учеников какого-то класса, убеждается, что названные им ученики присутствуют. На этом основании учитель делает вывод, что присутствуют все ученики.

В полной индукции заключение с необходимостью , а не с некоторой вероятностью вытекает из посылок. Эта «индукция» является, таким образом, разновидностью дедуктивного умозаключения , хотя по внешней форме, по ходу мысли напоминает неполную индукцию.

К дедукции относится и так называемая математическая индукция , широко используемая в математике.

Умозаключение математической индукции слагается из двух посылок и заключения. Первая из посылок говорит, что рассматриваемое свойство присуще первому предмету рассматриваемого ряда. Вторая посылка утверждает, что если это свойство есть у произвольного предмета данного ряда, то оно есть и у непосредственно следующего за ним предмета. Заключение утверждает, что свойство присуще каждому предмету ряда.

Общая схема математической индукции:

A (1);

если А (k) , то A (k + 1) ;

следовательно А (n) .

Ни полная, ни математическая индукция не являются индуктивным умозаключением в собственном смысле этого слова. И та, и другая всегда дают истинные заключения из истинных посылок и только внешне напоминают индуктивные рассуждения.